Global Change Biology and Sustainability

Global change biology and sustainability involves study of the profound effects of human activities on ecological systems through modifications of the physical environment, climate system, disturbance regime, and through extinctions and introductions of biota, as well as investigations on how to manage ecological systems for long-term sustainability.
Italics = secondary appointment in EEB, can serve as graduate co-chair only

Regina Baucom

Regina Baucom’s research broadly revolves around the central question “Why and how do some organisms persist and adapt to inhospitable environments?” She works on this topic utilizing species from the morning glory genus, many of which are agricultural weeds. There are three main projects underway in Baucom’s lab: the evolutionary genomics of plant defense and plant weediness, the influence of the mating system on the evolution of herbicide resistance, and the role of the plant metagenome on adaptation.

Brad Cardinale (can serve as graduate co-chair only)

Brad Cardinale uses theory, experiments, and observational studies to address questions aimed at understanding how human alteration of the environment impacts the biotic diversity of communities and, in turn, how this loss can affect fluxes of energy and matter that are fundamental to all biological processes. His research features three primary branches: biodiversity and ecosystem processes, community assembly, and restoration ecology.

Vincent Denef

Vincent Denef uses metagenomic and metaproteomic approaches to gather an improved understanding of microbial population dynamics and community functioning within ecosystem context. He is particularly interested in the connection between genomic variation and altered ecological behavior, and how short- and long-term environmental change can drive both. While he has been studying these concepts in systems ranging from abandoned mines to the human gastrointestinal tract, he is currently focusing on freshwater systems such as the Laurentian Great Lakes.

Christopher Dick

Christopher Dick is interested in the ecology and evolutionary history of species-rich tropical forests. His research has focused primarily on phylogeny, phylogeography and population genetics of Neotropical trees. He is also eager to collaborate on projects involving temperate forest trees.

Deborah Goldberg

Deborah Goldberg's research focuses on the mechanisms and consequences of community dynamics, including mechanisms of invasion and coexistence, plant-soil feedbacks, ecology of clonal plants, community and ecosystem response to climate change, and ecology of the human microbiome.

Mark Hunter

Mark Hunter's research interests include plant-animal interactions, ecosystem ecology, biodiversity and population dynamics. His research links population processes with ecosystem processes in terrestrial environments and explores the mitigation of global environmental change.

Inés Ibáñez (can serve as graduate co-chair only)

Inés Ibáñez's research interests are in plant community ecology, climate change and invasive species.

John Lehman

John Lehman's research interests are in limnology, aquatic science, and nutrient and trophic dynamics.

Phil Myers

Philip Myers' research focuses on the rapid and profound change in the composition of small mammal communities in the northern Great Lakes Region. He is also interested in the drivers of the change, including climate, and their ultimate effects on Great Lakes forest ecosystems.

Knute Nadelhoffer

Knute Nadelhoffer's research interests are in ecosystem ecology, terrestrial biogeochemistry and global change.

Mercedes Pascual

Mercedes Pascual is interested in climate change and infectious disease dynamics, especially malaria. She is also interested in how climate variability influences the dynamics of vector-borne and water-borne diseases at interannual time scales. 

Tom Schmidt

Thomas Schmidt's laboratory is focused on the physiology and ecology of microbes. We routinely develop and apply nucleic acid-based methods to explore and understand patterns of diversity and function of microbial communities, and to guide cultivation efforts. Our research is currently focused on two microbial communities: those found in terrestrial environments and are involved in the flux of greenhouse gases, and microbes that constitute mammalian microbiome. As we develop a better appreciation for the relationship between the structure and function of these microbial communities, we are conducting research to uncover fundamental principles that explain distribution patterns of microbial populations.

John Vandermeer

John Vandermeer's lab engages in two related classes of research – the structure and function of tropical agroecosystems and the ecological theory of complex systems as applied to agroecosystems generally. Work in tropical agroecosystems is mainly concerned with organic coffee production, focusing on a model system of pest control in a large production facility in southern Mexico. Theoretical work focuses on spatial self-organization and its consequences for the structure of ecological networks.

Donald Zak (can serve as graduate co-chair only)

Donald Zak's work draws on ecology, microbiology, and biochemistry and is focused at several scales of understanding, ranging from the molecular to the ecosystem scale. Current research centers on understanding the link between plant and microbial activity within terrestrial ecosystems, and the influence climate change may have on these dynamics. Teaching includes courses in soil ecology and ecosystem ecology.