**100. Introduction to Statistical Reasoning. *** No
credit granted to those who have completed or are enrolled in
Soc. 210, Poli.Sci. 280, Stat. 402, 311, 405, or 412, or Econ.
404. (4). (NS). (QR/1). *

This course is designed to provide an overview of the field of statistics. Course topics include methods of analyzing and summarizing data, statistical reasoning as a means of learning from observations (experimental or sample), and techniques for dealing with uncertainties in drawing conclusions from collected data. Basic fallacies in common statistical analyses and reasoning are discussed and proper methods indicated. Alternative approaches to statistical inference are also discussed. The course emphasis is on presenting basic underlying concepts rather than on covering a wide variety of different methodologies. Course evaluation is based on a combination of a Thursday evening midterm examination, a final examination and teaching fellow input. The course format includes three lectures and a laboratory (1 hour per week). Cost:2 WL:3

**311/I.O.E. 365. Engineering Statistics. *** Engin.
103, Math. 215, and I.O.E 315 or Stat 310. No credit granted to those who have completed or are enrolled in Stat. 405 or 412.
One credit granted to those who have completed Stat. 402. (4).
(Excl). *

Collection and analysis of engineering data associated with stochastic industrial processes. Topics include: exploratory data analysis, describing relationships, importance of experimentation, applications of sampling distribution theory, test of hypotheses, experiments with one or more factors, and regression analysis. Students are required to use statistical packages on CAEN for problem solving. (Nair)

**402. Introduction to Statistics and Data Analysis.
*** No credit granted to those who have completed or
are enrolled in Econ. 404 or Stat. 311, 405, or 412. (4). (NS).
(QR/1). *

In this course students are introduced to the concepts and applications of statistical methods and data analysis. Statistics 402 has no prerequisite and has been elected by students whose mathematics background includes only high school algebra. Examples of applications are drawn from virtually all academic areas and some attention is given to statistical process control methods. The course format includes three lectures and a laboratory (l.5 hours per week). The laboratory section deals with the computational aspects of the course and provides a forum for review of lecture material. For this purpose, students are introduced to the use of a micro-computer package and the Macintosh computer. Course evaluation is based on a combination of three examinations GIVEN WEDNESDAY EVENINGS, a final examination and teaching fellow input. Cost: 2 WL: 3

**404. Problem Solving in Medical Statistics. *** Enrollment
in Inteflex or permission of instructor. (3). (Excl). *

This course is intended to introduce students in the medical sciences to the measurement and interpretation of clinically relevant variables. Applications to the design and analysis of clinical trials and diagnosis are presented. The methodology includes some probability theory, classical inference, and curve fitting. Many of the topics are illustrated through current problems in medicine. Cost:2 WL:4

**405/Econ. 405. Introduction to Statistics. *** Math.
115 or permission of instructor. Juniors and seniors may elect
concurrently with Econ. 201 and 202. No credit granted to those
who have completed or are enrolled in Stat. 311 or 412. Students
with credit for Econ. 404 can only elect Stat. 405 for 2 credits
and must have permission of instructor. (4). (Excl). (QR/1). *

See Economics 405. (Howrey)

**412. Introduction to Probability and Statistics. *** Prior
or concurrent enrollment in Math. 215 and CS 183. No credit granted
to those who have completed or are enrolled in 311 or 405. One
credit granted to those who have completed Stat. 402. (3). (Excl). *

The objectives of this course are to introduce students to the basic ideas of probability and statistical inference and to acquaint students with some important data analytic techniques, such as regression and the analysis of variance. Examples will emphasize applications to the natural sciences and engineering. There will be regular homework, including assignments which require the use of MTS, two midterms, and a final exam. Cost:2 WL:3

**413. The General Linear Model and Its Applications.
*** Stat. 402 and Math. 217; concurrent enrollment in
Stat. 425. Students who have not taken Math. 217 should elect
Stat. 403. Two credits granted to those who have completed Stat.
403. (4). (Excl). *

Some motivating real examples – regression, ANOVA, time series
- abstraction into a common model; statement of the model and assumptions; description of the design matrix including dummy
variables; discussion of the error vector and assumptions regarding those errors; geometry of the GLM, including projections, Pythagorus, least squares estimation, residuals, predicted values, Gauss-Markov
result, *etc.; *normal distribution theory results; confidence
and predictive intervals, F and t tests, the extra sum of squares
principle; multiple and partial correlations with geometry; checking
for violations of the assumptions, normal probability plots, outliers, influence functions, problems of multicollinearity or near collinearity;
cures for violations, transforms, weighting, *etc. *Multiple
regression applications; choice of independent variables, principal
components, all possible regressions, stepwise procedures, use
of data subsamples (validation); polynomial regression, orthogonal
polynomials. Use of dummy variables and ANOVA applications, fixed
effect completely crossed ANOVA cases, balanced versus unbalanced
designs, contrasts, interactions, multiple inference procedures
including at least Scheffe, studentized range and Bonferroni;
nested designs, *etc. *Time series applications, use of polynomial
regression, deseasonalization, leads, lags and autoregressive
models, serial correlation, Durbin-Watson test, ARIMA models, *etc. *Real applications will be stressed. There will be
weekly assignments and a final exam. Class format is 3 hours of
lecture and 1.5 hours of laboratory per week. Note: This course
is designed primarily for Statistics Undergraduate Concentrators;
other students, without the Mathematics 217 prerequisite, should
elect Statistics 403. Cost:2 WL:3

**425/Math. 425. Introduction to Probability. *** Math.
215. (3). (N.Excl). *

* Sections 001 and 002. * Sample
spaces and axiomatic probability; elementary combinatorics; conditional
probability and independence; random variables; probability distributions, including binomial, Poisson, Gamma, and normal; expectation, mean
and variance; moment generating functions; the law of large numbers;
central limit theorem. Cost:2 WL:3

* Sections 003 and 004. * See Mathematics
425 for description.

**426. Introduction to Mathematical Statistics. *** Stat.
425. (3). (NS). *

This course covers the basic ideas of statistical inference, including sampling distributions, estimation, confidence intervals, hypothesis testing, regression, analysis of variance, nonparametric testing, and Bayesian inference. The sequence of Statistics 425/426 serves as a prerequisite for more advanced Statistics courses. Weekly problem sets, two hourly exams, and one final exam. Cost:2 or 3 WL:3

**466/IOE 466. Statistical Quality Control. *** Statistics
311 or IOE 365. (3). (Excl). *

Design and analysis of procedures for forecasting and control of production processes. Topics include: attribute and variables; sampling plans; sequential sampling plans; rectifying control procedures; charting, smoothing, forecasting, and prediction of discrete time series. Cost:2 or 3 WL:3

**500. Applied Statistics I. *** Math. 417 and a course in statistics (Stat. 402 or 426); or permission of instructor.
(3). (Excl). *

Review of matrices, multivariate normal and related distributions.
Regression and general least squares theory, Gauss-Markov Theorem, estimation of regression coefficients, polynomial regression, step-wise regression, residuals. ANOVA models, multiple comparisons, analysis of covariance, Latin squares, 2^{6 p} designs, random and mixed-effects models. Applications and real data analysis
will be stressed, with students using a computer to perform statistical
analyses. Cost:2 WL:3

**502. Analysis of Categorical Data. *** Stat.
426. (3). (Excl). *

Models for contingency tables, including the Poisson, multinomial, and hypergeometric models; additive and loglinear models for cell probabilities; estimation of parameters, exact and asymptotic sampling distributions, and sufficient statistics, test of hypotheses, including likelihood ratio tests. Cost:2 or 3 WL:3

**505/Econ. 673. Econometric Analysis. *** Permission
of instructor. (3). (Excl). *

This course is designed for first-year graduate students in economics, business, and related subjects. It involves a fairly rigorous development of statistical reasoning and methods relating to hypothesis testing, estimation, and regression analysis. Students are supposed to have had a course in calculus and in introductory statistics. Knowledge of matrix algebra is required. Evaluation of students is based on midterm and final examinations and weekly assignments. Students taking this course are expected to take Economics 674 – Econometric Analysis II in the following term. Cost:2 WL:3 (Howrey)

**506. Statistical Computing. *** Stat. 426
or 500, and CS 380 or 283, or permission of instructor. (3). (Excl). *

Selected topics in statistical computing, including: Monte Carlo procedures, generation of random numbers, computation of estimators, linear and non-linear problems, resampling algorithms, splines, other special topics. Cost:2 or 3 WL:3

**510. Mathematical Statistics I. *** Math.
450 or 451, and a course in probability or statistics; or permission
of instructor. (3). (Excl). *

Review of probability theory including: probability, conditioning, independence, random variables, standard distributions, exponential families, inequalities and the central limit theorem. Introduction to decision theory including: models, parameter spaces, decision rules, risk functions, Bayes versus classical approaches, admissibility, minimax rules, likelihood functions and sufficiency. Estimation theory including unbiasedness, complete sufficient statistics, Lehmann-Scheffe and Rao-Blackwell theorems, and various types of estimators. Cost:3 WL:3

**525/Math. 525. Probability Theory. *** Math.
450 or 451; or permission of instructor. Students with credit
for Math. 425/Stat. 425 can elect Math. 525/Stat. 525 for only
1 credit. (3). (Excl). *

See Math. 525.

**550/SMS 576/I.O.E. 560. Bayesian Decision Analysis.
*** Stat. 425 or permission of instructor. (3). (Excl). *

Axiomatic foundations for personal probability and utility; interpretation and assessment of personal probability and utility; formulation of Bayesian decision problems; risk functions, admissibility likelihood principle and properties of likelihood functions; natural conjugate prior distributions; improper and finitely additive prior distributions; examples of posterior distributions, including the general regression model and contingency tables; Bayesian credible intervals and hypothesis tests; application to a variety of decision-making situations. There will be assigned homework exercises, a midterm and a final exam. Cost:3 WL:3 (Andrews)

**552. Sequential Analysis and Design. *** Stat.
426 or equivalent. (3). (Excl). *

Models for sequential sampling and sequential design; potential advantages and disadvantages of sequential methods, including their increased efficiency, ethical considerations, and the effect on significance levels; the insensitivity of the likelihood function and posterior distributions to sequential sampling; fixed width confidence intervals; the Robbins-Munro and related processes; some common sequential tests, including the sequential probability ratio test and restricted sequential procedures; decision theoretic formulation of sequential problems; Bayesian solutions of sequential problems by dynamic programming; applications to quality control and clinical trials; special topics. Cost:3 or 4 WL:3

**570. Experimental Design. *** Stat. 426 and a basic knowledge of matrix algebra; or permission of instructor.
(3). (Excl). *

Basic topics and ideas in the design of experiments: randomization and randomization tests; the validity and analysis of randomized experiments; randomized blocks; Latin and Graeco-Latin squares; plot techniques; factorial experiments; the use of confounding and response surface methodology; weighing designs, lattice and incomplete block and partially balanced incomplete block designs. Cost:3 or 4 WL:3

**575/Econ. 775. Econometric Theory I. *** Math.
417 and 425 or Econ. 653, 654, 673, and 674. (3). (Excl). *

This course involves a derivation of the required theory in mathematical statistics, and of the main results needed for statistical inference associated with the linear model. The emphasis is on the asymptotic distribution theory as it is applied to the methods of estimation used in econometrics. The course is a prerequisite for Statistics 576 (Econometric Theory II). Cost:2 or 3 WL:3

University of Michigan | College of LS&A | Student Academic Affairs | LS&A Bulletin Index

This page maintained by LS&A Academic Information and Publications, 1228 Angell Hall

The Regents
of the University of Michigan,

Ann Arbor, MI 48109 USA +1 734 764-1817

Trademarks of the University of Michigan may not be electronically or otherwise altered or separated from this document or used for any non-University purpose.