Courses in Computer Science (Division 353)

183/EECS 183. Elementary Programming Concepts. (4). (NS). (BS).

This is an introductory course for students who desire a good working knowledge of basic programming techniques using a high-level language. The course is suitable for both non-concentrators and pre-concentrators in Computer Science and Computer Engineering. Suggested as a prerequisite for CS 280 for students whose programming background is not strong. Introduction to a high-level programming language, top-down design, and structured programming. Basic searching and sorting techniques. Basic data structures; arrays and records; introduction to pointers and dynamic data structures. No previous experience in computing or programming is assumed. Students will write and debug several computer programs. Computer Usage: five or six assignments are given, each requiring the student to write and debug programs using THINK Pascal on the Macintosh microcomputer. Cost:2 WL:1 (Ford)

216/EECS 216. Circuit Analysis. Prior or concurrent enrollment in Math. 215. (4). (Excl). (BS).

Resistive circuit elements; mesh and node analysis, network theorems; network graphs and independence; energy storage elements; one- and two-time-constant circuits; phasors and a.c. steady-state analysis; complex frequency and network functions; frequency response and resonance. Lecture and laboratory.

270/EECS 270. Introduction to Logic Design. (4). (Excl). (BS).

Binary and non-binary systems, Boolean algebra digital design techniques, logic gates, logic minimization, standard combinational circuits, sequential circuits, flip-flops, synthesis of synchronous sequential circuits, PLA's, ROM's, RAM's, arithmetic circuits, computer-aided design. Laboratory includes hardware design and CAD experiments.

280/EECS 280. Programming and Introductory Data Structures. Math. 115 and (CS 183 or 284 or Engineering 104, or EECS 100). Two credits granted to those who have completed CS 283. (4). (NS). (BS).

Techniques and algorithm development and effective programming, top-down analysis, structured programming, testing, and program correctness. Program language syntax and static runtime semantics. Scope, procedure instantiation, recursion, abstract data types, and parameter passing methods. Structured data types, pointers, linked data structures, stacks, queues, arrays, records, and trees.


lsa logo

University of Michigan | College of LS&A | Student Academic Affairs | LS&A Bulletin Index

This page maintained by LS&A Academic Information and Publications, 1228 Angell Hall

The Regents of the University of Michigan,
Ann Arbor, MI 48109 USA +1 734 764-1817

Trademarks of the University of Michigan may not be electronically or otherwise altered or separated from this document or used for any non-University purpose.