Since the Physics Department discourages students from changing
midstream from Physics 140 to Physics 125 or from Physics 140/240
to Physics 126, it is important that students choose the first
course of a physics sequence with care. Prospective engineers, physicists and chemists should elect Physics 140/240 rather than
Physics 125/126 because concentration programs in these areas
require the Physics 140/240 sequence. In the case of some departmental
concentration programs (zoology, biology, * etc.) * or in special
individual circumstances, students can elect or are encouraged
to elect the Physics 125/126 sequence. Some advisors will advise
all students who have had calculus to elect Physics 140/240. Physics
140/240 can be elected by all students who have had calculus, but it should be elected only by students who enjoy solving difficult
problems and who think that they will be good at it.

**125. General Physics: Mechanics, Sound, and Heat. *** Two
and one-half years of high school mathematics, including trigonometry.
No credit granted to those who have completed 140 or 141. (4).
(NS). *

Physics 125 and 126 constitute a two-term sequence offered
primarily for students concentrating in the natural sciences, architecture, pharmacy, or natural resources; and for preprofessional
students preparing for medicine, dentistry, or related health
sciences. Physics 125 and 126 are an appropriate sequence for
any student wanting a quantitative introduction to the basic principles
of physics but without the mathematical sophistication of Physics
140 and 240. Strong emphasis is placed on problem solving, and skills in rudimentary algebra and trigonometry are assumed. While
a high school level background in physics is not assumed, it is
helpful. Physics 125 and 126 are * not available * by the
Keller plan. * Physics 125 * covers mechanics and mechanical
waves including sound waves. The final course grade is based on three one hour examinations, class performance, a final examination, and laboratory work (20-25%). * Physics 126 * is a continuation
of Physics 125; and covers electricity and magnetism, the nature
of light, and briefly introduces atomic and nuclear phenomena.

**126. General Physics: Electricity and Light. *** Phys.
125. No credit granted to those who have completed 240 or 241.
(4). (NS). *

See Physics 125 for a general description.

**140. General Physics I. *** Prior or concurrent
election of calculus. Phys. 140 and 141 are normally elected concurrently.
No credit granted to those who have completed 125. (3). (NS). *

Physics 140, 240, and 242 constitute a three-term sequence
which examines concepts in physics fundamental to the physical
sciences and engineering. Physics 242 focuses on modern physics
and is required of all physics concentrators. This introductory
sequence uses calculus, and, while it is possible to elect Physics
140 and Mathematics 115 concurrently, some students will find
it more helpful to have started one of the regular mathematics
sequences before electing Physics 140. This introductory sequence
is primarily designed to develop a * skill *: the skill to
solve simple problems by means of mathematics. Developing this
skill requires * daily * practice and a sense for the * meaning *
of statements and formulas, as well as an awareness of when one
understands a statement, proof, or problem solution and when one
does not. Thus one learns to know what one knows in a disciplined
way. The final course grade is based on class performance and upon examinations.

Certain sections (see the * Time Schedule) * of Physics
140 and 240 are offered by the Keller Plan, a self-paced program
without formal lectures. An information sheet describing the format
of Keller Plan offerings is available in the Physics Department
Office (1049 Randall Laboratory). Students who want to elect Physics
140 or 240 by the Keller Plan should read this information before
registering. Sections 040 (Lecture) and 041 (Discussion) of Physics
140 for Winter Term, 1983, have been reserved for Honors students, Physics concentrators and other qualified science concentrators.
Enrollment by permission only. Honors students get permission
from Honors Office (1210 Angell). Others, see Prof. Wiedenbeck, 1039 Randall.

**141. Elementary Laboratory I. *** To be elected
concurrently with Phys. 140. No credit granted to those who have
completed 125. (1). (NS). *

Physics 141 and 241 are laboratory courses intended to accompany Physics 140 and 240 (respectively) and provide a perspective on physics as an experimental science.

**240. General Physics II. *** Phys. 140 or the equivalent; Phys. 240 and 241 are normally elected concurrently.
No credit granted to those who have completed 126. (3). (NS). *

See Physics 140.

**241. Elementary Laboratory II. *** To be elected
concurrently with Phys. 240. No credit granted to those who have
completed 126. (1). (NS). *

See Physics 141.

**242. General Physics III. *** Phys. 240 or
equivalent. (3). (NS). *

This course will deal in a quantitative manner with topics
which may be classified as "modern" physics, and shall
include the investigation of: special relativity, the relationship
of particles and waves, the Schrödinger equation applied
to barrier problems, atomic structure and the interpretation of
quantum numbers, the exclusion principle and its applications, structure of solids, * etc. * The class will meet as a lecture group.
Applications of the principles will be considered in the lecture
section on a regular basis.

**288. Physics of Music. *** (3). (NS). *

The purpose of this course is to study the physical aspects of the phenomena that make up the practice and experience of music, as well as to get a glimpse into physics as a mental activity. No previous expertise in either music or physics is required. The main emphasis will be on lecture demonstrations with student participation where feasible. Topics to be covered include: nature of sound; mechanics of vibration; musical tones and intervals; scales and temperaments; wave motion, interference, and diffraction; propagation of sound through pipes; physics of brass instruments; physics of woodwind instruments; physics of string instruments; physics of the piano; and high-fidelity sound reproduction. A graduate-credit option (Physics 489) is available by supplementing the regular course with an appropriate independent project. (Weinreich)

**401. Intermediate Mechanics. *** Phys. 126
or 240-241, and Math. 216; or equivalent. (3). (NS). *

This course is required for physics concentrators. It includes a study of vector operators and vector calculus along with their application to various physical problems. Among the topics investigated are: (1) harmonic motion in several dimensions; (2) motion under the influence of central forces; (3) wave motion; and (4) rigid-body rotation. The methods of LaGrange are applied to suitable examples. Examinations are given at various times during the term.

**403. Optics Laboratory. *** Phys. 242 or permission
of instructor. (2). (NS). *

This is a laboratory course in geometrical and physical optics intended for science concentrators and especially for students electing Physics 402. One experiment every one or two weeks is performed during four-hour laboratory periods; a short report is required for each experiment. The experiments are designed such that they may be performed without students having a formal background in the topic investigated. The experiments include: (1) lens equations; (2) lens aberrations; (3) telescopes; (4) polarization; (5) diffraction; (6) interferometry; (7) electro-optical effects; (8) light detection; (9) fourier optics; (10) holography; and (11) spectroscopy. Students may also devise experiments. The course grade is based on the work done in the laboratory period as well as written reports.

**405. Intermediate Electricity and Magnetism. *** Phys.
126 or 240-241, and Math. 216; or equivalent. (3). (NS). *

This course extends the material introduced in Physics 240 on the classical theory of electricity and magnetism. It tries to develop further both the theoretical ideas contained in Maxwell's equations for these fields, as well as their practical application. It is a required course for all physics concentrators, and is basic to many of the courses and laboratories which follow. Physics 242 is strongly recommended.

**406. Statistical and Thermal Physics. *** Phys.
126 or 240-241, and Math. 216. (3). (NS). *

An introduction to the thermal and other macroscopic properties of matter, their description in terms of classical thermodynamics, and their microscopic interpretation from the perspective of statistical mechanics. Techniques from classical mechanics, electricity and magnetism, and elementary quantum mechanics will be used. Frequent homework problem assignments, at least one hour exam, and a final examination will be given.

**407. Thermodynamics Laboratory. *** Phys.
126 or 240-241. (2). (NS). *

This course is normally elected concurrently with Physics 406
and emphasizes thermodynamics and heat transport. Each section
consists of eight students subdivided into groups of two with
each group rotating through five experiments: (1) use of the thermoelectric
effect to measure temperature, (2) use of thermistors for the
measurement of temperature, (3) measurement of the viscosity of
gases, (4) measurement of the thermal conductivity of gases, and (5) determination of the ice-water phase diagram. Each experiment
takes a maximum of three weeks of laboratory time. Grades are
based on the record of data taken, computation and analysis, error
analysis, display of results (graphs, tables, * etc.) * and comparison
of results with theory and/or accepted values. Laboratory performance
is observed and evaluated by the course instructors.

**409. Modern Physics Laboratory. *** Open primarily
to science concentrators with junior standing, or by permission
of instructor. (2). (NS). *

This course is an advanced undergraduate laboratory course designed to acquaint students in the basic techniques of experimental physics and to introduce them to physical phenomena of modern physics. Students select experiments from among those which are available. The results of the experiments are recorded. These laboratory notes together with a written laboratory report are graded. The reports and performance in laboratory are the basis for the course grade. There are no formal examinations. Students may modify existing experiments or develop new experiments. Topics investigated include: photo-electric effect; diffraction; electron charge and charge-to-mass ratio and others. Physics concentrators should elect Physics 459 or 461.

**438. Electromagnetic Radiation. *** Phys.
405. (3). (NS). *

This course is primarily intended for undergraduate students, but can also be taken by those beginning graduate students who are lacking E-M in their backgrounds prior to their taking the graduate 505/506 sequence or who are interested only in the M.S. programs. Topics to be covered are: (1) plane electromagnetic waves in various media; reflection and refraction at dielectric and conducting surfaces; skin effect; wave guides and cavities; dispersion; (2) multipole radiation; (3) radiation fields due to moving charged particles; Brehmsstrahlung; synchrotron radiation; Cerenkov radiation.

**451, 452. Methods of Theoretical Physics. *** Phys.
401 and Math. 450, or equivalent are prerequisites to Phys. 451;
Phys. 451 is prerequisite to 452. (3 each). (NS). *

Physics 452 is offered Winter Term, 1983.

This is a course in mathematical methods of physics. The textbook
by G. Arfken, * Mathematical Methods for Physicists, * is
used; approximately 85% of the contents will be covered. This
course is considered a necessary preparation for graduate school.
(Weinreich)

**453. Atomic Physics I. *** Phys. 242 or equivalent, Phys. 401 and 405; or permission of instructor. (3). (NS). *

A brief review of the mechanical, thermal, electric, magnetic and chemical properties of matter will be given. The empirical foundation of atomic physics will be discussed in some detail. The theoretical developments resulting from the failure of classical theories and early atomic models will be discussed, wherein wave mechanics will be studied and a brief introduction to the Schrödinger equation will be given. Other topics include the exclusion principle and some quantum statistical mechanics.

**454. Electronic Acquisition and Processing of Physics
Data. *** Open to juniors, seniors, and graduate students;
a basic knowledge of computer structure is helpful. (3). (NS). *

The course consists of two hours of lecture-demonstration and one hour of laboratory project work. The course is organized and designed primarily as a vehicle for the dissemination of information on "how to" regarding the electronic handling of data in experimental physics. The range is therefore very broad and the coverage of each topic is of an introductory nature. A single specific, in-depth topic is required for each student enrolled in the course. Emphasis is placed on the use of commercially available electronic circuit elements and computing equipment in terms of their external specifications without reference to the internal resistors and transistors of which they are composed. Integrated circuit technology is used in most examples. The topics introduced are: digital circuit elements/Boolean functions/gates/flip flops: use of the basic elements in counters, storage registers, decision asking, conversion and display; timing and control circuits; computer input-output specifications and timing; external device interfacing/rules and conventions; computer programming for external device handling; basic analog circuits/operational amplifiers/comparitors/multipliers; analog to digital conversion; and digital to analog conversion. The project or laboratory work is established and approved on an individual basis and can be associated with the student's work, research, or with the other research efforts within the department. (Chapman)

**457. Nuclear Physics. *** Phys. 453. (3).
(NS). *

Topics of study will include (1) nuclear structure: binding energies, size and shape, angular momentum, parity, isopin, magnetic moments, electric quadrupole moments, statistical, shall and collective models for the nucleus; (2) nuclear decays, radioactivity, barrier penetration and alpha-particle decay, the weak interaction and beta-decay, electromagnetic transitions in nuclei; (3) nuclear interactions: basic properties of the nuclear force, nucleon-nucleon scattering, the deuteron, nuclear reactions and reaction models; and (4) nuclear radiation: interaction of charged particles, gamma-rays and neutrons with matter, nuclear radiation detectors. The basic elements of quantum mechanics are used.

**459. Nuclear Laboratory. *** Phys. 242 and any 400-level physics laboratory course, or permission of instructor.
(2). (NS). *

This is an advanced laboratory course designed to acquaint students with the techniques of experimental nuclear physics and to introduce them to physical phenomena of modern physics. Included are experiments in the following areas: scintillation counting; gamma-gamma angular correlation; Compton effect; Rutherford scattering; muon lifetime; nuclear magnetic resonance; and nuclear fission. This course is normally elected as a sequel to Physics 403, 407, or 409.

**461. Atomic Laboratory. *** Phys. 242 and any 400-level physics laboratory course, or permission of instructor.
(2). (NS). *

Intended mostly for science majors. Conducted in a manner similar to Physics 403, 407, 409 and 459, but more advanced. Emphasis on atomic phenomena and instrumentation. Experiments available include atomic spectroscopy, Zeeman effect, optical pumping and lasers, x-ray diffraction and Moseley's law, Faraday effect and others.

**463. Introduction to Solid State Physics. *** Phys.
453 or permission of instructor. (3). (NS). *

Main topics to be covered are cohesion in solids; Free Electron
Theory in Metals; Periodicity in Solids, Crystal Structure, Symmetry, Reciprocal Lattice, Diffraction Methods, Electrons in Periodic
Structures; Band Theory of Solids and Fermi Surfaces; Phonons, Thermal Effects; Applications to Semiconductor Devices. Students
should have a background in thermodynamics, elementary statistical
mechanics, plus a little quantum mechanics. There are three lectures
per week, one of which may be a discussion period. Student evaluation
is based on midterm and final exams; occasional short tests and weekly problem sets. Text: C. Kittel, * Introduction to Solid
State Physics, * 5th ed., Wiley, 1976.

**489. Physics of Music. *** Permission of instructor.
(3). (NS). *

Same as Physics 288. (Weinreich)

University of Michigan | College of LS&A | Student Academic Affairs | LS&A Bulletin Index

This page maintained by LS&A Academic Information and Publications, 1228 Angell Hall

The Regents
of the University of Michigan,

Ann Arbor, MI 48109 USA +1 734 764-1817

Trademarks of the University of Michigan may not be electronically or otherwise altered or separated from this document or used for any non-University purpose.