Biological Sciences

Courses in Biology (DIVISION 328)

100. Biology for Nonscientists. Not open to those with Advanced Placement or "Departmental" credit in biology, nor to those concentrating in the biological sciences. (4). (NS).

Biology 100 is a one term course designed to introduce students to current biological concepts. It can be taken to satisfy distribution requirements under Patterns I, II, or III. The course consists of three hours of lecture per week plus a coordinated discussion session which occupies two hours per week. Biology 100 provides an introduction to some general principles of biology and concentrates on the areas of cell biology, genetics, ecology, and evolution. Within these areas topics such as cell structure, cell metabolism, nutrition, human genetics, genetic engineering, nature of evolution, and sociobiology will be discussed. A major objective of this course is to point out to students the nature of the scientific process and illustrate the uses and non-uses of science in contemporary life. Wherever possible the ethical and social implications of contemporary scientific effort will be discussed.

This course is designed for students with a minimal background in the biological sciences but we do assume some exposure to biology at the high school level. Discussion sections enroll 20 students and are taught by graduate student teaching assistants. In the discussion section students have the opportunity to review material presented in lecture, observe and perform experiments which illustrate lecture material, and participate in discussions of issues raised in the lecture segment. Attendance at the discussion section is required. Course grade is determined on the basis of three lecture examinations (300 points) and upon discussion quizzes and papers (100 points). (Martin)

112. Introduction to Biology: Term A. Chem. 123 or 107 or the equivalent recommended. No credit is granted to those who have completed Biol. 105. (4). (NS).

Biology 112 is the first term of a two-term introductory biology sequence (112/114). The sequence is intended for concentrators in biological and other science programs, premedical or other preprofessional students. Other students wishing detailed coverage of biology and having suitable prerequisites are also welcome. The aims of Biology 112/114 are to provide factual and conceptual knowledge of biology; to afford suitable experience in obtaining and interpreting biological data, including formulation and testing of hypotheses; and to give an integrated overview of present-day biology. The topical coverage of Biology 112 is about equally divided among three areas, in the following sequence: (a) cellular and molecular biology; (b) genetics and developmental biology; (c) microbial and plant biology (structure, function, diversity).

Each week, students are expected to attend three lectures and one three hour laboratory/discussion section. Students must attend their regularly assigned laboratory/discussion meetings starting with the first week of the course or their space may be given to someone else on the waiting list. There will be two course-wide examinations and a final examination, as well as supplementary films and review sessions. Students must be sure to reserve appropriate times and dates for these activities (specified in the Time Schedule). In addition, regular attendance at all laboratories and discussions, and written laboratory reports are required for completion of the course.

The required textbook, laboratory manual, and course pack of syllabus and lecture notes are available at bookstores. Students should not buy any study guides or other supplementary materials for this course.

Enrollment for Honors work will entail time and effort beyond the regular course material; times for additional meetings will be announced. For Honors credit, register in Biology 112 (lecture section 002 and any lab/discussion plus Biology 113 (one credit hour).

Note concerning prerequisites. A functional knowledge of general chemistry at the college level is recommended, and is utilized starting at the outset of the term in Biology 112. Chemistry 123 or 107 or the equivalent college-level chemistry course is recommended (Chemistry 125 is even more helpful, but is not required). Although a high school biology course is helpful preparation for Biology 112, it is not required. For further information contact the Biology 112/114 office, Room 1563 C.C. Little Building.) (Crum and Shappirio)

Section 008 Permission of Comprehensive Studies Program (CSP). This CSP section, which covers the complete course syllabus, is designed for students who want to be certain they are highly prepared for Biology 114 and are willing to devote the effort necessary to do so. Extra class time is provided for in-depth analysis of central concepts. Therefore, enrollment in this CSP section will entail laboratories exercises and discussion time beyond the regular course requirements.

113. Introductory Biology Honors. Concurrent enrollment in Biology 112 and admission to the College Honors Program. (1). (Excl).

The scientific method is the basis for scientific inquiry in biology. This course is intended to introduce the scientific method to Honors students who are concurrently enrolled in Biology 112. Discussion materials include the classic papers of Watson-Crick, Briggs-King, etc., and such current problems as genetic engineering, acid rain, and the green revolution. Weekly reading assignments provide the basis for discussion. Students are requested to submit several short summaries and one term paper, and are expected to participate in the weekly discussions. This course prepares Honors students to undertake an independent experiment in Biology 112. Open only to students admitted to the LSA Honors Program.

114. Introduction to Biology: Term B. Biol. 112. No credit is granted to those who have completed 105. (4). (NS).

The course is a continuation of Biology 112, including the following topics: (a) evolutionary biology; (b) ecology and behavior; and (c) animal biology (structure, function and diversity). Aims and format are stated above for Biology 112. Students must attend their regularly assigned laboratory/discussion section starting with the first week of the course, or their space may be given to someone else on the waiting list. For information concerning the textbook and laboratory manual, contact bookstores. Further information about this course can be obtained from the Biology 112/114 office in Room 1570 C.C. Little Building. (Doneen and Hazlett)

Section 037: Permission of Comprehensive Studies Program (CSP). This CSP section, which covers the complete course syllabus, is designed for students who want to be certain they are highly prepared for Biology 114 and are willing to devote the effort necessary to do so. Extra class time is provided for in-depth analysis of central concepts. Therefore, enrollment in this CSP section will entail laboratories exercises and discussion time beyond the regular course requirements.

123. Human Sexuality. Not open to students concentrating in the biological sciences. (3). (NS).

Human Sexuality is designed to introduce students to the biological and social factors which determine and regulate their sexuality. Approximately two-thirds of the course deals with the anatomical, physiological and genetic determinants of sexuality. In this section the sexual anatomy of men and women, hormonal regulation of sexual function, fertilization, pregnancy, birth, lactation, conception control, and venereal diseases are examined. In the latter third of the course emphasis shifts to behavioral and social factors. Here, human sexual behavior, sexual response, orgasm, psychosexual development, homosexuality, rape, and the genesis of sex roles are examined. The evolution of sexuality in both humans and other animals is a recurrent theme in this course. Biology 123 is designed for students with a minimal background in biological science. Even so you will profit more from this course if you have had some exposure to high school biology. Biology 123 is a logical counterpart to Biology 100 and Physiology 101. The text to be used in the course will be Katchadourian, Fundamentals of Human Sexuality, 4th ed., 1985. (J. Allen)

222. Energy and Ecology. May not be included in any of the Biological Sciences concentration programs. (2). (NS).

This study of the use of energy and its impact on the world ecosystems and climate treats the basic question of how to supply the energy needs of mankind while maintaining ecological integrity. The following sources of energy are considered: solar, biomass, wind, tidal, ocean thermal, hydro, coal, oil, gas, and nuclear, including their mining and manufacture, transport, utilization, and ecological principles and conservation practices that are essential for a healthful and stable world. (Gates)

262. Biology of Cancer. One term of introductory biology. (3). (NS).

The Biology of Cancer is a lecture/discussion course designed to provide students with a basic understanding of the biological events associated with the formation of cancer. This course is organized around three fundamental questions: what is cancer, what are the causes of cancer, and can cancer be cured or prevented? Lectures will include descriptions of classical and recent experiments which address these questions, and will also provide students with the vocabulary and background needed to critically read and evaluate technical literature dealing with the subject of cancer. Although introductory biology is an essential prerequisite for this course, an attempt will be made to accommodate the needs and interests of students of varying backgrounds, including non-biology majors. Student performance will be evaluated by a combination of quizzes, exams, and a term paper based upon library research. In order to provide the time required for this library research, the lecture-discussion meetings will be dismissed for approximately two weeks late in the term. There will be no assigned textbook, but an extensive reserve list of relevant books will be available in the Natural Science Library. The class will meet twice a week for an hour and a half; in general, meetings will consist of a one hour lecture followed by questions and discussion. (Kleinsmith)

291/Micro. 291. Microbiology Laboratory. Micro. 101 or Biol. 105 or 112-114; or permission of instructor. (3). (NS).

The revolutionary advances in molecular biology, and their impact on society are based on the study and utilization of microorganisms. This laboratory experience helps form a sound foundation for all of the biological sciences. The course consists of one orientation lecture and two laboratory sessions each week. Topics covered include an introduction to microbial variety, methods of study, specific techniques, and general consideration of microbes in the world around us. The course is required in the microbiology concentration program, and is appropriate for concentrators in biology, botany, and cell biology. Evaluation is based on performance on three exams, and a variable number of quizzes, practical exams, and written reports. There is no required text. (Helling)

300. Writing for Biologists. Biol. 105 or 112-114, and English 125 or equivalent. (2). (Excl).

This course is intended to teach undergraduate students how biologists should write for publication. Completion of the course with a grade of C or better will satisfy the junior-senior writing requirement in Biological Sciences. It is open only to students concentrating in one of the programs in the Division of Biological Sciences. Lectures, discussion meetings, and tutorials: one lecture and one discussion meeting every week. Every student will meet with his or her TA on a regular basis for a tutorial. Evaluation will be based on writing and revision for tutorials, participation in discussion meetings, and one lecture exam. Some lecture topics: Scientific thinking; the experimental approach to framing and answering questions; kinds of scientific writing; resources available to biologists; review of style, with emphasis on problems that recur in the writing of biologists; reports of experimental results, descriptive papers, and review papers; the process of publication, including review and editing. (Anderson)

305. Genetics. Biol. 105 or 112 (or the equivalent). (4). (NS).

This course is designed for students who are majoring in the natural sciences, or who intend to apply for graduate or professional study in basic or applied biological sciences. This introduction to genetics is divided into the following segments: DNA and chromosomes, gene transmission in Eukaryotes, linkage and recombination, mutation and its consequences, gene expression and regulation, population genetics. There are three hours of lecture a week and one discussion section directed by teaching assistants. The discussion sections are used to introduce relevant new material, to expand on and review the lecture material, and to discuss problem assignments. Grading is based on examinations covering the lecture material, discussion material, reading assignments in the text, and new problems that test applications of basic concepts and genetic techniques. Practice problem sets designed for this course will be available and are covered in discussion sections or the Genetics Clinic where all office hours of TA's are held. Two demonstrations of living material and genetic tools are given during the term. Required text: Goodenough, Genetics, Third Edition, 1984. (S. Allen)

343. Oceanography: Marine Ecology. Biol. 105 or 112-114 or equivalent and at least one term of college chemistry or physics, or permission of instructor. (3). (NS).

Marine ecology is a study of the organisms and processes of the ocean, including both pelagic and benthic communities. It is the branch of biological oceanography that applies ecological principles to the study of marine life. Lectures will cover the inter-relationships of marine organisms and their environment. Organisms and communities from the following habitats will be discussed: estuaries, the rocky intertidal, coral reefs, the coastal zone, the deep sea and the open ocean. The course will treat the ecology of marine organisms as different as bacteria and whales. This course fulfills the undergraduate Biology concentration requirements for a course in Ecology and Evolutionary Biology. It may be taken singly, or as a complement to courses in physical and chemical oceanography taught by other units. Grading procedure will be based on exam performance: two one-hour exams plus a comprehensive final. (Kilham and Lehman)

392. Introductory Developmental Biology. Biol. 105, or Biol. 112 and 114 (or the equivalent). (3). (NS).

This course is designed to introduce students to the basic principles of developmental biology. Special emphasis will be placed upon the continuity of developmental processes in terms of 1) the temporal sequence of development from the fertilized egg to the adult and 2) levels of control, from the expression of genetic information to the organization of complex tissues and organs. Greatest emphasis will be placed on development in vertebrates. Whenever possible, the experimental basis for our understanding of developmental events will be stressed. Major areas of coverage will include gametogenesis, fertilization, early embryogenesis including maternal control and nucleocytoplasmic interactions, induction and morphogenetic movements, cellular interactions in organogenesis, and morphogenesis. Certain aspects of postnatal development, such as regeneration, will also be covered. This course is intended for juniors and seniors, but it is also open to sophomores. There are three one-hour lectures per week. During the term there will be two evening examinations plus the final. (Carlson and Tosney)

393. Developmental Biology Laboratory. Prior or concurrent enrollment in Biol. 392. (2). (NS).

This course provides students with the opportunity to study firsthand the development of a number of live vertebrate and invertebrate embryos. In addition to observation of normal embryogenesis, students perform several of the experimental analyses which have contributed to a basic understanding of developmental processes. Exercises focus on fertilization, developmental morphology, induction, determination and differentiation of various tissues, metamorphosis and regeneration. In addition to one scheduled three-hour laboratory session each week, students are expected to spend about three additional hours in the laboratory each week. Short lectures are presented to introduce aspects of basic morphological areas of investigation. Formal reports on two exercises are required. There are three laboratory tests. Maintenance of lab note book for a complete and accurate record of observations and experimental results is required. There is a required lab manual. (Jeyabalan)

401/Micro. 401. General Microbiology. Biochemistry (Biol. 411 or Biol. Chem. 415); preceded or accompanied by Biol. 305. (3). (NS).

This course is a comprehensive introduction to microbiology. Lectures cover cellular structures, physiology, genetics, taxonomy, and ecology. Medical microbiology and immunology are included in the context of microbial ecology. Eukaryotic micro-organisms and cells in culture are discussed, but emphasis is placed on prokaryotes and viruses. (Helling and Douthit)

411. Introductory Biochemistry. Biol. 105 or 112 (or the equivalent); and Math. 113 or 115; and organic chemistry and physics. No credit is granted to those who have completed Biol. Chem. 415. (4). (NS).

The major objective of this course is to provide upper level undergraduates and beginning graduate students in biology, physiology, cellular and molecular biology, pharmacy, biological chemistry, pharmacology, toxicology, nutrition, physical education, microbiology, bioengineering, and other related areas of biology with an appreciation of the molecular aspects basic to metabolism in plants and animals. Emphasis is placed upon the physiological and dynamic rather than upon the morphological or structural aspects of molecular biology. Biochemistry is defined in the broad sense, i.e., that organizational level of biology as described in molecular or chemical terms. This course is directed toward those contemplating a career in some aspect of experimental biology, including medicine, dentistry, and other professional areas. The general subject matter includes amino acids, structures of protein, enzymes, carbohydrates, lipids, energetics, and the basic metabolism of biological systems. The course is taught according to the methods of the Keller Plan, i.e., it is a self-paced, personalized system of instruction. Students interact according to their own schedules with undergraduate proctors chosen according to interest and ability to teach biochemistry to undergraduates. The course is divided into logical units of material, and students are expected to master the content of each unit. Upon the student's satisfaction that the unit material has been mastered, the student requests a quiz from a proctor. Upon successful completion of material on the quiz, the student is permitted to continue to the material of the next unit. Grades are assigned according to number of units successfully completed by the end of the term, plus a factor derived from a combination of the midterm and final exams. Each quiz is graded immediately upon its completion by both the proctor and the student. This system is designed to take into consideration different rates of individual learning as well as to eliminate unhealthy competition among students. Proctors are available to help students approximately 60 hours per week. Several lectures dealing with biochemical topics are given by the instructor. Material covered in these lectures represents an extension of information in the course and is not the subject of examination. (Vadlamudi)

412. Teaching Biochemistry by the Keller Plan. Biol. 411 and permission of instructor. May not be included in any of the Biological Sciences concentration programs. (3). (NS). (TUTORIAL).

Biology 412 adheres to the old Chinese proverb: "I hear and I forget. I see and I remember. I do and I understand." Undergraduates who previously have taken an introductory biochemistry course act as proctors (tutors, TA's) for students currently taking Introductory Biochemistry (Biology 411). Six hours per week (twelve hours in the Spring half-term) are spent helping and quizzing Biology 411 students. In addition, each proctor provides two mastery level, multi-choice questions for each course unit (30 total) from which the instructor constructs the final examination and midterm examination for both Biology 411 and 412. Proctors also prepare a report on a biochemical discovery which they present to their peers, the 411 students, and the instructor. The major roles of the proctors are to examine the students on their mastery of unit material and to help the student requiring explanation supplementary to the textbook. At the completion of an instructor-generated written quiz, the student and proctor grade the quiz together. The proctor asks the student additional verbal questions generated by the proctor. The proctor passes a student when, and if, the proctor feels the student has mastered the unit material. Student-proctor interactions are evaluated by the students. The proctors are graded on the basis of the quality of their final and midterm examination questions, their biochemical discovery session presentations, and their grades on the midterm and final examination. Proctors learn considerable biochemistry by repeated teachings of unit materials and, in addition, profit from their experience as teachers and evaluators. (Vadlamudi)

424. Cell and Developmental Genetics. Biol. 305; a course in cell or developmental biology is helpful but not required. (2-3). (NS).

This course is an in-depth analysis of current information on gene control of developmental processes in multicellular organisms. Stress is placed on reading articles in scientific journals; no textbook is used. For each topic covered in lecture, a list of references including one or two key review papers is provided. Students are encouraged to read one or more of these papers. No examinations; student evaluation is based on two term papers, one being an extensive analysis of a topic covered in the lectures and the other a compilation of short summaries of the papers read during the term. Students electing the course for 3 credits are required to present a seminar. (Rizki)

428(415). Cell Biology. Biol. 305 and Biol. 411 or Biol. Chem. 415 or their equivalents. Students with credit for Biol. 320 must obtain permission of instructor. (4). (Excl).

This lecture course provides in-depth analysis of the molecular basis of structure and function in living cells. Topics covered will include: intracellular transport and secretion; membrane structure and function; bioenergetics in chloroplasts, mitochondria, and prokaryotes; lysosomes and peroxisomes; organelle biogenesis; cytoskeleton and cell motility; cell cycle and cell differentiation; and a survey of methods for studying these topics. Emphasis on the interpretation of experimental data is heavy. There will be two exams (Thur 7-9) and a final exam. Questions should be addressed to Ms. Crandall, 2083 Nat. Sci. (Frasch and Pringle)

429(416). Laboratory in Cell and Molecular Biology. Biol. 417 or 428, or concurrent enrollment in Biol. 428. No credit is granted to those who have completed Biol. Chem. 416 or 516. (3). (Excl).

To familiarize the student with modern laboratory technique used in molecular genetics and in the analysis of cell structure and function is the course objective. The course deals with the theoretical and practical aspects of subcellular analysis. The course illustrates certain techniques: cell fractionation, enzyme assay, identification of subcellular functional units, and chloroplast function. Experiments also include cloning, restriction mapping, and gel electrophoresis. There will be short lab quizzes and problem sets given. Course grades will be determined based on three major lab reports (written in a format typical of manuscripts submitted for publication in scientific journals), five short reports and two quizzes. For permission, inquire in room 2083 Natural Science. (Bender)

472/Nat. Res. 425. Ecology of Managed Populations and Communities. Two terms of calculus and one term of statistics recommended. (4). (Excl).

The study of the dynamics of single species populations and systems of multi-species populations is examined. This is accomplished by reviewing the theoretical explanations for various topics and comparing these predictions with observations and experiments with animal and plant populations. Topics covered include population growth and its limiting factors (resource acquisition, life history patterns, habitat use, and social structure), competition, predation, population cycles, food web structure, island biogeography, determinants of species diversity, and the stability and persistence of assemblages of populations. Because the theoretical development of these topics depends upon mathematics, students will find experiences with introductory calculus useful, and basic statistical knowledge is useful in understanding the comparison of observed plant and animal populations with the theoretical predictions. The course consists of three one-hour lectures, a lab experiment requiring one hour and a discussion group for one-two hours each week. Students are evaluated on the basis of two hourly exams, a term paper, weekly short lab reports and participation in the discussion group. (Belovsky)

494. Biophysical Chemistry. Biol. 411 and Math. 114; or the equivalent. (3). (NS).

This course is designed to give students in the life sciences a background in physical chemistry as applied to biological systems and biological instrumentation. Particular aspects of thermodynamics, kinetics, and statistical mechanics are introduced with examples drawn from enzyme folding and catalysis. The applications of physical chemistry which are discussed include the role of non-covalent bonds in the stability and folding of proteins and nucleic acids, the role of entropy in the polymerization of proteins, the nature of specific and non-specific interactions, the energetics of cellular transport, DNA supercoiling, electrophoresis, ultracentrifugation, the use of fluorescence in cell biology, the principles of light and electron microscopy, and the principles of the detection of radiation by photographic and scintillation techniques. Ten graded problem sets and four examinations will be given. (Langmore)

505/Micro. 505. Pathogenic Microorganisms. A course in general microbiology and biological chemistry. Open to undergraduate and graduate students. (3). (NS).

See Microbiology 505. (Freter)

567. Topics in Molecular Evolution. Biol. 305 and one upper level course in either molecular or evolutionary biology. (3). (Excl).

Topics in Molecular Evolution: Molecular Methods in Evolutionary Biology. This year we will examine the usefulness of molecular analyses in systematics and evolution. Both plant and animal systems will be considered. We shall begin with a brief survey of the molecules available and an evaluation of their relative merits. The use of informational macromolecules (DNA, RNA, and proteins) will be emphasized. We will discuss strengths and weaknesses of various analytical techniques, the kind of data that each provides, and various ways devised for handling and interpreting the data. Both practical and theoretical considerations will be addressed. The techniques covered will include protein electrophoresis, immunological methods, peptide analysis, protein sequencing, DNA hybridization, restriction enzyme analysis of DNA, DNA sequencing, comparison of structural features of DNA, structural analysis of chromosomes, and RNA oligonucleotide analysis. Lecture and discussion. A strong background in either systematic/evolutionary biology or biochemistry/molecular biology is recommended. Student evaluations will be based on examinations, problem sets and a research paper. (Brown and Palmer)

Courses in Botany (Division 331)

102. Practical Botany. (4). (NS).

This course aims to teach the techniques for successfully growing and propagating plants and the principles of botanical science upon which they are based. Students are also introduced to the various ways in which the knowledge of plants and their use by the lay person can enhance the quality of life. The environmental factors important in plant growth, particularly light, temperature, water, and soil will be studied. Students will gain practical experience in such applied botanical techniques as the following: preparation of soils and artificial growth media; use of fertilizers; propagation of plants by cuttings, layering, division, bulbs, grafting, and seed; methods of pruning, plant breeding, pest and disease control; preparation of terraria, hanging baskets, and bonsai; the use of plants in landscaping, and the ecology and management of natural areas; and the care and development of living plant collections. Students will be expected to learn to recognize a selected group of indoor and outdoor garden plants, edible wild plants, and common poisonous species. Field trips will include a visit to a commercial greenhouse and an estate garden. Two lecture-discussion periods, and six hours of laboratory per week. Discussions and laboratories are held at the Botanical Gardens, with bus service provided. (Steiner)

190. Plants, People, and Environment. High school biology and chemistry. (3). (NS).

Botany 190 is divided into three basic sections: (1) plants, their way of life, and uses by people; (2) probing the ecological nature of our environment in natural, agricultural, and urban ecosystems; and (3) solutions to and constructive action for our environmental problems. We cover such topics as wild edible foods, the pros and cons of the green revolution, growing and maintaining your own plants, drug and medicinal plants, alternative means of pest control, alternative energy sources, new ideas for home and urban landscapes, natural areas and their preservation, and wild and endangered species of plants. We have a natural foods dinner prepared by the students, and one field trip, late in the term, to the Kaufman farm. Throughout the course, students present oral environmental alerts on specific environmental problems and solutions to them. Grade evaluation is based on three midterms and one environmental alert (written or oral). (Kaufman)

207. Plant Biology: An Organismic Approach. (4). (NS).

An introductory botany course covering a broad spectrum of topics including principles of plant systematics, evolution, ecology, and biogeography. The lectures and laboratories concentrate on a group-by-group treatment of plant diversity, ranging from algae and fungi through primitive vascular plants and culminating in flowering plants. The approach is an evolutionary perspective, treating plants as organisms (individuals, populations, and communities) and emphasizing the innovations and adaptations of the various plant groups as well as life history strategies. The course also includes plant growth and structure. Two or three field trips are scheduled. Two one-hour lectures and two three-hour labs per week. A total of three lecture tests and three laboratory tests will be scheduled. Text: Raven et al, Biology of Plants, 3rd edition. (Wynne)

275. Introduction to Plant Development. Biol. 105 or 112; or the equivalent. (4). (NS).

For students interested in how plants grow, this course presents an integrated structural and functional approach to plant development. Topics studied include cell biology and cellular mechanics of plant growth, organogenesis and differentiation with emphasis on controls, particularly hormonal and environmental. The course will provide a basis for understanding the natural history and some practical aspects of plant life. Students attend two one-hour lectures, a one-hour discussion session, and three hours of laboratory each week. The lab will provide experience with both whole plants and axenic tissue cultures. (Nooden)

422. Systematic Botany. Biol. 105 or Biol. 112 and 114 (or the equivalent), or Bot. 207; or permission of instructor. (4). (NS).

The diversity of higher plants is taught with lectures, color projection slides, specimens, living plants, and laboratory discussions. Emphasis is on the level of orders, families and genera, temperate as well as tropical, so that students can make themselves familiar with plants in any part of the world. The course focuses mainly on the flowering plants because of their dominant role on the earth, but gymnosperms and pteridophytes are studied too. The phylogeny of vascular plants provides the framework. In angiosperms hypothetical ancestral types are discussed and various lines are analysed, e.g., the pinks (Caryophillidae), roses (Rosidae), wind-pollinated trees (Hamamelidae), lilies (Liliidae), and so on. Related subjects, such as habitats of plants, geography, biosystematics, cladistics and floral biology are presented in special lectures. A major component of the science of botany, systematics is considered essential to training plant scientists and botany majors. However, the course is also elected by biology majors, zoologists, foresters, ecologists and ethnobotanists. Some individuals take the course merely because they enjoy plants and wish to learn about them, including students with backgrounds as diverse as engineering and city planning. The methods of instruction include lecture and laboratory, the latter including demonstrations and discussions. There are two midterms, a final, and numerous small lab quizzes. Various texts are recommended for students with special interests, but only two are required. They are Davis, P.H. and J. Cullen, The Identification of Flowering Plant Families (Cambridge University Press) and Wood, C.E.,Jr. A Student's Atlas of Flowering Plants (Harper and Row). (Wagner)

456/Geol. 456. Paleobotany. An introductory course in botany or biology; or permission of instructor. (4). (NS).

The course covers the morphology, classification, and evolution of the major groups of fossil plants, and the stratigraphic and paleoecological significance of fossil plant assemblages. Beginning with fossils nearly three billion years old from the Precambrian - the earliest evidence of living cells we shall proceed to study forms of plant life, and the evolutionary changes reflected in the fossil record, through geological time to the present. There are no prerequisites beyond general botany or general biology, but an introductory course in physical geology, and Botany 207 (or equivalent) would be beneficial. Instruction will be by lecture and laboratory, and will include a midterm and a final examination. Lecture and laboratory topics will be coordinated and in laboratory we shall study beautiful fossil specimens from the extensive paleobotanical collections of the Museum of Paleontology. Required text: Paleobotany and the Evolution of Plants, by Wilson N. Stewart (Cambridge). (Beck)

472. Plant Population Biology. A course in ecology. (3). (Excl).

The course will cover empirical and theoretical approaches to the ecology of plant populations and communities. Topics include plant life history patterns, breeding systems, ecotypic differentiation, population dynamics, mechanisms and consequences of intraspecific and interspecific competition, interaction of plants with other trophic levels, plant distribution patterns, and community organization. Although the emphasis will be on natural populations, managed systems will also be considered. A course in ecology is required background. Grades will be based on a literature review paper, midterm, and final examination. Although there will be a textbook, emphasis will be placed on reading primary sources. The format of the course will be lecture and discussion. (Goldberg)

479. Plant Cell and Tissue Culture. Eight hours in biology; at least junior standing. (4). (NS).

This course deals with contemporary methods and results of studies on genetic engineering in plants and plant protoplast, cell and tissue cultures. The lectures cover such topics as (1) how plant cells, tissues, and organs are cultured, (2) induction of roots and shoots in tissue cultures, (3) regeneration of whole plants from single cells, (4) protoplast isolation and fusion of protoplasts, (5) somatic cell hybridization in plants, (6) genetic engineering with plant protoplasts, cell, and tissue cultures, (7) applications of plant cell and tissue culture in plant breeding, forestry, crop production, and horticulture, (8) uses of plant cell and tissue cultures to produce secondary compounds of interest in medicine and pharmacology, (9) uses of plant cell and tissue cultures in the U.S. Space Biology Program under NASA, and (10) uses of plant cell and tissue cultures to save threatened and endangered plant species from extinction. The lab deals with the primary techniques of plant genetic engineering and plant cell and tissue culture: isolation of protoplasts, mericloning, establishing tissue cultures and cell suspension cultures, somatic embryogenesis, somatic cell hybridization, anther and pollen cultures to get haploids, production of secondary metabolites in cell cultures, isolation of the Ti plasmid from the crown gall bacterium, electrophoretic separation of rice seed proteins and heat shock proteins, and sterile techniques and media preparation. Students will have an opportunity to do an independent project in the lab. (Kaufman)

491/Geol. 491. Quaternary Paleoecology. A course in ecology or in Pleistocene geology. (2). (NS).

Quaternary Paleoecology aims to reconstruct environments and biotic communities of the Pleistocene and Holocene (the Ice Ages and the postglacial, altogether the past two million years) and to interpret the evidence in terms of process. The objective is extension of time base lines back into geologic time to improve understanding and prediction of climates, glaciations, sea level, and plant and animal distributions. Techniques and principles of paleoecology are presented and major questions will be discussed, such as effects of changing composition of the atmosphere and environmental influences on the development of mankind. The course is not part of a departmental sequence but of use to ecologists, environmental geologists, geomorphologists, biogeographers, archaeologists, and civil engineers. The textbook is R.S. Bradley's Quaternary Paleoecology (1985). Prerequisite: a college course in ecology or Pleistocene geology or permission of instructor. Lectures, discussions, one term paper, midterm hour examination and final examination. (Benninghoff)

Courses in Zoology (Division 499)

252. Pattern Analysis of Chordate Structure. Biol. 112 and 114 (or the equivalent). (4). (NS).

Zoology 252 teaches the comparative method of science, and its application to understanding a wide variety of structural characteristics of chordate animals. The course begins with a description of the comparative method and lectures on evolutionary, speciation, and phylogenetic theories. The rest of the course is devoted to description and analysis of chordate features using these theoretical tools. The laboratory includes practical experiences with chordates intended to illustrate issues discussed in the lecture, and includes dissections and preparation of skeletal materials and embryos. This format has prepared pre-professional students in the medical sciences for many years. A good introductory biology course is the only prerequisite. There are three lecture examinations and at least one laboratory examination. A complete course syllabus is available. (Kluge and Fink)

325. Principles of Animal Physiology: Lecture. Biol. 112 and 114 (or the equivalent) and a year of chemistry. (3). (NS).

This course is an introduction to the physiological view of animals and emphasizes zoological rather than human aspects. The course uses evidence from different groups of organisms to identify the general principles of functional mechanisms. It also considers variations in these mechanisms as related to the requirements of the animals but does not attempt a phylogenetic survey. The course is intended for concentrators and pre-medical students in their sophomore, junior, or senior years. Prospective animal physiologists should consider electing Zoology 421, 422, or 428 - these courses cover more limited areas in greater depth. The subject matter includes metabolism and temperature regulation, water and ion balance and excretion, digestion, respiration and circulation, and the nervous system and integration. There are three one-hour lectures a week, three one-hour examinations, and a final exam. Supplementary reading in the undergraduate library is recommended. (Hume and Webb)

326. Animal Physiology Laboratory. Concurrent enrollment in Zool. 325. (1). (NS).

The exercises in laboratory deal (usually concurrently) with topics covered in the lecture. The laboratory meets for one four-hour session a week. Problem sets are graded for each exercise. In addition, two full-length reports are also required. Students choose which exercises to write up in full. Zoology 326 must be taken concurrently with Zoology 325. Students who have taken or intend at a later date to take Zoology 325 will not be admitted to Zoology 326. (Hume and Webb)

422. Introduction to Neurobiology. Biol. 112 and 114 (or the equivalent), one year of chemistry, and a year of physics. (3). (NS).

An introduction to neural function, including such topics as action potentials, synaptic phenomena, sensory systems, motor output, neurohormonal integration, development and memory. The instructor recommends one year of organic chemistry. (Oakley)

423. Laboratory in Neurobiology. Prior or concurrent enrollment in Zool. 422 or equivalent, and permission of instructor. (2). (NS).

Anatomy and physiology of invertebrate and vertebrate nervous systems, including examination of various sensory and motor systems. Electrophysiological techniques are routinely used. (Easter and Oakley)

476. Ethology. Biol. 112 and 114 (or the equivalent) and one additional course in zoology. (3). (NS).

The objective of this course is to acquaint students with the subject of animal behavior. All types of behavior are considered; both vertebrate and invertebrate examples are utilized. The course approaches behavior from a zoological viewpoint; emphasis is placed on understanding the methods of investigation used in the study of animal behavior. Consideration of physiological mechanisms is given, as well as discussion of the evolutionary framework in which behavior patterns evolve. The course is divided into two sections. In the first, the types of factors which affect behavior are discussed. During the second part of the course, functional categories of behavior (feeding, orientation, agonistic, sexual) are discussed with an emphasis on bringing together as many factors as possible in an attempt to understand the control (both proximate and ultimate) of these behaviors at all levels. Although Biology 112 and 114 or equivalent is required, it would be best to have at least one of the following three areas before taking the course: genetics, ecology, or neurophysiology. Students who wish to obtain a more complete background should plan to take Biology 470 and/or Zoology 475 either before or after taking Zoology 476. Methods of instruction: (1) lectures are the primary means of instruction; (2) a text is also utilized, as are outside readings; (3) there is a midterm lecture exam and a term paper, as well as a final exam. (Hazlett)

477. Laboratory in Animal Behavior. Prior or concurrent enrollment in Zool. 476; and permission of instructor. (2). (NS).

The objective of this laboratory course is to give students first-hand experience with observing animal behavior and in measuring the behavioral effects of experimental treatment of animals. In addition, considerable attention is given to the design of experiments by the students. A variety of animals are used vertebrate, invertebrate, terrestrial, fresh-water; diurnal and nocturnal. A variety of behavior patterns are studied in the experiments, ranging from simple orientation movements to complex social behaviors. About one quarter of the course is devoted to individual research projects which the students design themselves. (Hazlett)

580/Anatomy 715. Regeneration in Vertebrates. An introductory course in developmental biology; graduate or senior standing, and permission of instructor. (2). (NS).

This is a lecture-discussion course designed principally for graduate students. Its object is to cover the principles of regeneration in vertebrates. The first half of the course is devoted to an in-depth analysis of amphibian limb regeneration as a biological model system. The second half of the course is tailored according to the interests of the members of the class. Class participation consists of regular readings and discussions based upon them, a one hour student seminar and a paper. (Carlson)

lsa logo

University of Michigan | College of LS&A | Student Academic Affairs | LS&A Bulletin Index

This page maintained by LS&A Academic Information and Publications, 1228 Angell Hall

The Regents of the University of Michigan,
Ann Arbor, MI 48109 USA +1 734 764-1817

Trademarks of the University of Michigan may not be electronically or otherwise altered or separated from this document or used for any non-University purpose.