**181/EECS 181. Introduction to Computer Systems. *** Credit is granted
for only one course among CS 181, Engin. 103, and Engin. 104. (4). (NS). *

Computer Science 181 is meant for students in the liberal arts and related areas with little or no background in computing systems who wish to become computer literate. Lectures cover general computing topics: hardware, networks, operating systems, programming, history and social issues. Students get hands-on experience in the laboratories using software packages for text processing (MacWrite), databases (FileMaker Pro), and spreadsheets (Excel); students also sign on the central computing system to send and receive electronic messages and to participate in an electronic conference. Assignments include three major projects. The course pack contains an outline of lecture notes, selected articles on social issues, and tutorials on laboratory topics.

**183(283)/EECS 183. Elementary Programming Concepts. *** (4). (NS). *

This is an introductory course for students who do not plan to concentrate in computer science or engineering. The course is designed to give students a good fundamental knowledge of programming techniques in a high-level language. Suggested as a prerequisite for CS 280 for students whose programming background is not strong. Students who know how to program, but want to learn Pascal as a means of getting into 280 should not take 183, but Engineering 104 instead. Introduction to a high-level programming language, top-down design, and structured programming. Basic searching and sorting techniques. Basic data structures; arrays and records; introduction to pointers and dynamic data structures. No previous experience in computing or programming is assumed. Students will write and debug several computer programs. Computer Usage: five or six assignments are given, each requiring the student to write and debug programs using THINK Pascal on the Macintosh microcomputer.

**216/EECS 216. Circuit Analysis. *** Prior or concurrent enrollment
in Math. 216. (4). (Excl). *

Resistive circuit elements; mesh and node analysis, network theorems; network graphs and independence; energy storage elements; one- and two-time-constant circuits; phasors and a.c. steady-state analysis; complex frequency and network functions; frequency response and resonance. Lecture and laboratory.

**270/EECS 270. Introduction to Logic Design. *** (4). (Excl). *

Binary and non-binary systems, Boolean algebra digital design techniques, logic gates, logic minimization, standard combinational circuits, sequential circuits, flip-flops, synthesis of synchronous sequential circuits, PLA's, ROM's, RAM's, arithmetic circuits, computer-aided design. Laboratory includes hardware design and CAD experiments.

**280/EECS 280. Programming and Introductory Data Structures. *** Math.
115 and (CS 183 or 284 or Engineering 104, or by placement test in PASCAL).
(4). (NS). *

The goals of this course include concepts of information representation, algorithms, processes and processors, syntax, semantics, data structures and grammar. Students learn the basics of programming style, debugging, error control, computational correctness, and program verification. Prerequisites include advanced algebra and first term calculus, and computer literacy (knowledge of Pascal). Topics include techniques of algorithm development and effective programming in Pascal and in the C language, top-down analysis, structured programming, testing and program correctness. Program language syntax and static and run-time semantics. Scope, procedure instantiation, recursion, abstract data types, and parameter passing methods. Structured data types, pointers, linked data structures, stacks, queues, arrays, records, and trees.

**284/EECS 284. Introduction to a Programming Language or System. ***
(1). (Excl).
Section 001- C. * This course is for students who already know how to
program in some language other than C. It is a 14-lecture one-credit mini-course
which will focus on covering the fundamentals of the C language. Topics
will range from basic C control structures (if, switch, while, do while, for, and functions) through the use of basic data structures such as arrays, strings, structures, pointers and linked lists. We will cover as many of the standard C library functions as possible. ANSI standard C is utilized.

*Section 002- Pascal. * This course is for students who already know
how to program in some language other than Pascal. It is a 14-lecture one-credit
mini-course which will focus on preparing students for CS 280, the first
required programming course for Computer Science concentrators, but is suitable
for anyone wanting to learn to program in Pascal. Topics will range from
basic Pascal control structures (IF, CASE, WHILE, REPEAT, and FOR loops;
PROCEDURES and FUNCTIONS) through the use of data structures such as arrays, strings, records, pointers and linked lists.

**300/EECS 300/Math. 300. Mathematical Methods
in System Analysis. *** Math. 216 or 316 or the equivalent. No credit
granted to those who have completed or are enrolled in Math. 448. (3). (Excl). *

An introductory course in operational mathematics as embodied in Laplace Transforms, Fourier Series, Fourier Transforms and Complex Variables, with emphasis on their application to the solution of systems of linear differential equations. The response of linear systems to step, impulse, and sinusoidal forcing functions.

**303/EECS 303. Discrete Structures. *** Math. 115. (4). (Excl). *

Fundamental concepts of algebra; partially ordered sets, lattices, Boolean algebras, semi-groups, rings, polynomial rings. Graphical representation of algebraic systems; graphs, directed graphs. Application of the concepts to various areas of computer science and engineering.

**370/EECS 370. Introduction to Computer Organization. *** CS 270 and CS 280. (4). (Excl). *

Computer organization will be presented as a hierarchy of virtual machines representing the different abstractions from which computers can be viewed. These include the logic level, microprogramming level, and assembly language level. Lab experiments will explore the design of a micro-programmed computer. Lecture and laboratory.

**380/EECS 380. Data Structures and Algorithms. *** CS 280 and CS 303.
(4). (NS). *

Abstract data types. Recurrence relations and recursions. Advanced data structures: sparse matrices, generalized lists, strings. Tree-searching algorithms, graph algorithms, general searching and sorting. Dynamic storage management. Analysis of algorithms and 0-notation. Complexity. Top-down program development: design, implementation testing, modularity. Several programming assignments.

**381/EECS 381. Systems Programming. *** CS 380. (4). (Excl). *

Design and implementation of basic systems programming tools and infrastructure.
Topics to be covered include assembly language programming, assemblers, macro processors, linkers and loaders, and I/0 drivers, * etc., * and programming
projects will involve the design and implementation of such systems. Students
will also write some programs in assembly language.

**400/EECS 400/Math. 419. Linear Spaces and Matrix Theory. *** Four
terms of college mathematics beyond Math. 110. No credit granted to those
who have completed or are enrolled in 217 or 513. One credit granted to those who have completed Math. 417. (3). (Excl). *

See Mathematics 419.

**470/EECS 470. Computer Architecture. *** CS 370. (4). (Excl). *

Basic concepts of computer architecture and organization. Computer evolution. Design methodology. Performance evaluation. Elementary queueing models. CPU architecture. Introductions sets. ALU design. Hardwired and microprogrammed control. Nanoprogramming. Memory hierarchies. Virtual memory. Cache design. Input-output architectures. Interrupts and DMA. I/O processors. Parallel processing. Pipelined processors. Multiprocessors.

**473/EECS 473. Advanced Digital System Design. *** EECS 373 or permission
of instructor. (3). (Excl). *

Introduces advanced digital system design concepts, such as timing analysis, reliability, and testing. These concepts are then applied to a term-long design project of the student's choice. The result of this project will be a highly testable, highly reliable digital system.

**476/EECS 476. Foundations of Computer Science. *** CS 280 and 303
or equivalent. (4). (Excl). *

An introduction to computation theory: finite automata, regular languages, pushdown automata, context-free languages. Turing machines, recursive languages and functions, and computational complexity.

**477/EECS 477. Introduction to Algorithms. *** CS 380. (3). (Excl). *

Fundamental techniques for designing efficient algorithms and basic mathematical methods for analyzing their performance. Paradigms for algorithm design: divide-and-conquer, greedy methods, graph search techniques, dynamic programming. Design of efficient data structures and analysis of the running time and space requirements of algorithms in the worst and average cases.

**478/EECS 478. Switching and Sequential Systems. *** CS 270 and CS
303, and senior or graduate standing. (3). (Excl). *

An introduction to the theory of switching networks and sequential systems. Switching functions and realizations, threshold logic, fault detection, connectedness and distinguishability, equivalence and minimality, state identification, system decomposition.

**481/EECS 481. Software Engineering. *** CS 380. (4). (Excl). *

Pragmatic aspects of the production of software systems, dealing with structuring principles, design methodologies and informal analysis. Emphasis is given to development of large, complex software systems. A term project is usually required. WL:1

**482/EECS 482. Introduction to Operating Systems. *** CS 370 and 381.
(4). (Excl). *

Operating system functions and implementations: multitasking; concurrency and synchronization; deadlock; scheduling; resource allocation; real and virtual memory management; input/output; file systems. Students write several substantial programs dealing with concurrency and synchronization in a multitask environment.

**483/EECS 483. Compiler Construction. *** CS 370 and 381. (4). (Excl). *

Introduction to compiling techniques including parsing algorithms, semantic processing, and optimization. Students implement a compiler for a substantial programming language using a compiler generating system.

**484/EECS 484/IOE 484. Database Management Systems. *** CS 380 or IOE
473. (3). (Excl). *

Concepts and methods in the definition and management of large integrated data bases for organizational information systems. Functions and objectives of existing file and data management will be considered and methods of analyzing proposals for new data management software will be studied; database administration, database design, and data security problems.

**486/EECS 486. Object-Based Software Development*** CS 380. (3). (Excl). *

Object-based programming concepts such as data and program abstraction, decomposition of large systems into reusable objects and inheritence. Programming projects are done in an object-based language such as Ada. Comparative studies are made of languages such as C++, Objective C, Eiffel, and Smalltalk that support object-based programming.

**487/EECS 487/IOE 478. Interactive Computer Graphics. *** CS 380 or
IOE 373, and senior standing. (3). (Excl). *

Graphics devices and fundamentals of operation. Two dimensional and three dimensional transformations. Interactive graphical techniques and applications. Three dimensional graphics, perspective transformation, hidden line elimination. Data structures and languages for graphics. Interactive graphical programming.

**489/EECS 489. Computer Networks. *** CS 482. (3). (Excl). *

Hardware and software architectures employed in building modern computer networks. Emphasis is placed on architectural and design considerations over actual implementation issues. Tradeoffs in network architectures and in understanding what choices are available. Software problems assigned.

**492/EECS 492. Introduction to Artificial Intelligence. *** CS 380.
(4). (Excl). *

Basic artificial intelligence methods using LISP. Topics covered include search, rule-based systems, logic, constraint satisfaction, and knowledge representation.

**500. Special Study. *** Graduate or undergraduate concentration in
Computer Science; and permission of instructor. (1-6). (Excl). (INDEPENDENT).
May be repeated for credit. *

Students are introduced to the frontiers of System Science research. Sections 001, 002, and 003 are devoted, respectively, to Communications, Control, and Signal Processing. The tutorials are delivered by leaders of the respective research fields, invited from academia and industry. The presentations are self-contained and accessible to all graduate students in Systems Science.

**506/EECS 506. Computing System Evaluation. *** CS 183 or 280, and CS 370 and EECS 501. (3). (Excl). *

Theory and application of analytic methods for evaluating the performance of reliability of computing systems. Measures of performance, reliability, and performability. Reliability evaluation: classification and representation of faults, stochastic process models, coherent systems. Performance evaluation: Markovian queueing models, networks of queues. Unified performance-reliability evaluation. WL:1

**543/EECS 543. Knowledge-Based Computer Vision. *** CS 442 and CS 492.
(3). (Excl). *

Application of topics in AI to Computer Vision. Central issues are introduced through a critical examination of working image-interpretation systems. Topics: representation of geometric structure, and non-geometric characteristics relation of image features to object structure, reasoning, dealing with uncertainty, and dynamic interpretation. Programming required.

**545/EECS 545. Machine Learning. *** CS 492. (3). (Excl). *

Survey of recent research in learning in artofocoa; intelligent systems. Topics include learning based on examples, instructions, analogy, discovery, experimentation, observation, problem solving and explanation. The cognitive aspects of learning will also be studied.

**547/EECS 547. Cognitive Architecture. *** CS 492. (3). (Excl). *

Survey of architectures of symbolic systems in artificial intelligence. Architectures such as blackboards, production systems, logic systems, reflective systems, discovery systems and learning systems. Also integrated cognitive architectures such as ACT*, SOAR, MRS, and EURISKO. WL:1

**570/EECS 570. Parallel Computer Architecture. *** CS 470. (3). (Excl). *

Pipelining and operation overlapping, SIMD and MIMD architectures. Numeric and non-numeric applications. VLSI, WSI architectures for parallel computing, performance evaluation. Case studies and term projects.

**574/EECS 574. Theoretical Computer Science I. *** CS 476. (4). (Excl). *

Formal grammars, recursive functions, logic, complexity theory.

**575/EECS 575. Theoretical Computer Science II. *** CS 574. (4). (Excl). *

Advanced computational complexity, intractability, classical probability and information theory, algorithmic information theory, and special topics such as computational algebra, concurrency, semantics, and verification.

**577/EECS 577. Reliable Computing Systems. *** CS 280 and 478. (3).
(Excl). *

An introduction to models and methods used in the analysis and design of reliable hardware systems, software systems and computing systems. Aspects of reliability considered include fault tolerance, fault detection and diagnosis, reconfiguration, design verification and testing, and reliability evaluation. WL:1

**581/EECS 581. Software Engineering Tools. *** CS 481 or equivalent
programming experience. (3). (Excl). *

Fundamental areas of software engineering including life cycle paradigms, metrics, and tools. Information hiding architecture, modular languages, design methodologies, incremental programming, and very high level languages.

**582/EECS 582. Advanced Operating Systems. *** CS 482. (4). (Excl). *

Course discusses advanced topics and research issues in operating systems.
Topics will be drawn from a variety of operating systems areas such as distributed
systems and languages, networking, security and protection, real-time systems, modelling and analysis, * etc. *

**584/EECS 584. Distributed Database Concepts. *** CS 484. (3). (Excl). *

Database design methodologies, distributed database technology and developments in heterogeneous systems. Distributed database design and implementation issues such as transaction management, concurrency control, security, and query optimization. Database design includes semantic data modeling, transformation to SQL, normalization theory, physical design and data allocation strategies.

**586/EECS 586. Design and Analysis of Algorithms. *** CS 380. (3).
(Excl). *

Design of algorithms for nonnumeric problems involving sorting, searching, scheduling, graph theory, and geometry. Design techniques such as approximation, branch-and-bound, divide-and-conquer, dynamic programming, greed, and randomization applied to polynomial and NP-hard problems. Analysis of time and space utilization.

**588/EECS 588/IOE 578/ME 551. Geometric Modeling. *** CS 487 or ME
454 or permission of instructor. (3). (Excl). *

Individual or group study of topics in geometric modeling and computer graphics. Geometric data structures for curves, surfaces, and volume parameterization, and topological data structures for vertices, edges, faces, and bodies. Algorithms for set operations, Euler operations and deformations. Design and experimentation with geometric modelling facilities.

**592/EECS 592. Advanced Artificial Intelligence. *** CS 492, or permission
of instructor. (4). (Excl). *

Advanced topics in artificial intelligence. Issues in knowledge representation, knowledge based systems, problem solving, planning and other topics will be discussed. Students work on several projects.

**598/EECS 598. Special Topics in Electrical Engineering and Computer Science. ***
Permission of instructor or advisor. (1-4). (Excl). May be repeated for
credit. *

Topics of current interest in electrical engineering and computer science. Lectures, seminar or laboratory.

University of Michigan | College of LS&A | Student Academic Affairs | LS&A Bulletin Index

This page maintained by LS&A Academic Information and Publications, 1228 Angell Hall

The Regents of the University of Michigan,

Ann Arbor, MI 48109 USA +1 734 764-1817

Trademarks of the University of Michigan may not be electronically or otherwise altered or separated from this document or used for any non-University purpose.