Since the Physics Department discourages students from changing
midstream from Physics 140 to Physics 125 or from Physics 240
to Physics 126, it is important that students choose the first
course of a physics sequence with care. Prospective engineers, physicists and chemists should elect Physics 140/240 rather than
Physics 125/126 because concentration programs in these areas
require the Physics 140/240 sequence. In the case of some departmental
concentration programs (zoology, biology, * etc.) * or in special
individual circumstances, students can elect or are encouraged
to elect the Physics 125/126 sequence. Some advisors will advise
all students who have had calculus to elect Physics 140/240. Physics
140/240 can be elected by all students who have had calculus, but it should be elected only by students who enjoy solving difficult
problems and who think that they will be good at it.

**125. General Physics: Mechanics, Sound, and Heat. *** Two and one-half years of high school
mathematics, including trigonometry. No credit granted to those
who have completed 140. (3). (NS). *

Physics 125 and 126 constitute a two-term sequence offered
primarily for students concentrating in the natural sciences, architecture, pharmacy, or natural resources; and for preprofessional
students preparing for medicine, dentistry, or related health
sciences. Physics 125 and 126 are an appropriate sequence for
any student wanting a quantitative introduction to the basic principles
of physics but without the mathematical sophistication of Physics
140 and 240. Strong emphasis is placed on problem solving, and skills in rudimentary algebra and trigonometry are assumed. While
a high school level background in physics is not assumed, it is
helpful. Physics 125 and 126 are * not available * by the
Keller plan. * Physics 125 * covers mechanics and mechanical
waves including sound waves. The final course grade is based on three one hour examinations, class performance and a final examination. * Physics 126 * is a continuation of Physics 125; and covers
electricity and magnetism, the nature of light, and briefly introduces
atomic and nuclear phenomena.

**126. General Physics: Electricity and Light. *** Phys.
125. No credit granted to those who have completed 240. (3). (NS). *

See Physics 125 for a general description.

**127. Mechanics, Heat and Sound Lab. *** To be elected concurrently with Physics
125. No credit granted to those who have completed Physics 141.
(1). (NS). *

Physics 127 and 128 are laboratory courses intended to accompany Physics 125 and 126 (respectively) and provide a perspective on physics as an experimental science.

**128. Electricity and Light Lab. *** To be
elected concurrently with Physics 126. No credit granted to those
who have completed Physics 241. (1). (NS). *

See Physics 127 for a general description.

**140. General Physics I.
*** Prior or concurrent election of calculus. Phys. 140
and 141 are normally elected concurrently. No credit granted to those who have completed 125. (3). (NS). *

Physics 140, 240, and 242 constitute a three-term sequence
which examines concepts in physics fundamental to the physical
sciences and engineering. Physics 242 focuses on modern physics
and is required of all physics concentrators. This introductory
sequence uses calculus, and, while it is possible to elect Physics
140 and Mathematics 115 concurrently, some students will find
it more helpful to have started one of the regular mathematics
sequences before electing Physics 140. This introductory sequence
is primarily designed to develop a * skill *: the skill to
solve simple problems by means of mathematics. Developing this
skill requires * daily * practice and a sense for the * meaning *
of statements and formulas, as well as an awareness of when one
understands a statement, proof, or problem solution and when one
does not. Thus one learns to know what one knows in a disciplined
way. The final course grade is based on class performance and upon examinations.

Certain sections (see the * Time Schedule) * of Physics
140 and 240 are offered by the Keller Plan, a self-paced program
without formal lectures. An information sheet describing the format
of Keller Plan offerings is available in the Physics Department
Office (1049 Randall Laboratory). Students who want to elect Physics
140 or 240 by the Keller Plan should read this information before
registering.

An Honors section of Physics 140 is offered in the Fall Term followed by an Honors section of Physics 240 in the Winter Term. Prospective physics concentrators are encouraged to register for these sections.

*Section 009 – Permission of Comprehensive Studies Program
(CSP) . * This CSP section, which covers the complete course
syllabus, is designed for students who want to be certain that they are highly prepared for Physics 140 and are willing to devote the effort necessary to do so. Extra class time is provided for
in-depth analysis of central concepts. Therefore, enrollment in this CSP section will entail laboratories, exercises and discussion
time beyond the regular course requirements.

**141. Elementary Laboratory
I. *** To be elected concurrently with Phys. 140. No
credit granted to those who have completed 127. (1). (NS). *

Physics 141 and 241 are laboratory courses intended to accompany Physics 140 and 240 (respectively) and provide a perspective on physics as an experimental science.

**240. General Physics II. *** Phys. 140 or the equivalent; Phys. 240 and 241 are normally elected concurrently.
No credit granted to those who have completed 126. (3). (NS). *

See Physics 140.

**241. Elementary Laboratory II. *** To be elected
concurrently with Phys. 240. No credit granted to those who have
completed 128. (1). (NS). *

See Physics 141.

**242. General Physics III. *** Phys. 240 or
equivalent. (3). (NS). *

This course will deal in a quantitative manner with topics
which may be classified as "modern" physics, and shall
include the investigation of: special relativity, the relationship
of particles and waves, the Schrödinger equation applied
to barrier problems, atomic structure and the interpretation of
quantum numbers, the exclusion principle and its applications, structure of solids, * etc. * The class will meet as a lecture group.
Applications of the principles will be considered in the lecture
section on a regular basis.

**333. Elementary Keller Program. *** Permission
of instructor. (1-3). (Excl). May be repeated for credit with
permission of concentration adviser. *

Students work as tutors in Physics 140 or 240 Keller sections. One to three hours of credit may be earned while providing tutoring on a one-to-one basis under the supervision of a faculty member. Tutors are expected to spend three clock hours per week for each credit hour earned. Registration requires instructor approval, and the appropriate application forms are available in the Physics Department Office, 1049 Randall Laboratory.

**401. Intermediate Mechanics. *** Phys. 126
or 240-241, and Math. 216; or equivalent. (3). (NS). *

This course is required for physics concentrators. It includes a study of vector operators and vector calculus along with their application to various physical problems. Among the topics investigated are: (1) harmonic motion in several dimensions; (2) motion under the influence of central forces; (3) wave motion; and (4) rigid-body rotation. The methods of LaGrange are applied to suitable examples. Examinations are given at various times during the term.

**403. Optics Laboratory. *** Phys. 242 or permission
of instructor. (2). (NS). *

This is a laboratory course in geometrical and physical optics intended for science concentrators and especially for students electing Physics 402. One experiment every one or two weeks is performed during four-hour laboratory periods; a short report is required for each experiment. The experiments are designed such that they may be performed without students having a formal background in the topic investigated. The experiments include: (1) lens equations; (2) lens aberrations; (3) telescopes; (4) polarization; (5) diffraction; (6) interferometry; (7) electro-optical effects; (8) light detection; (9) fourier optics; (10) holography; and (11) spectroscopy. Students may also devise experiments. The course grade is based on the work done in the laboratory period as well as written reports.

**405. Intermediate Electricity and Magnetism. *** Phys.
126 or 240-241, and Math. 216; or equivalent. (3). (NS). *

This course extends the material introduced in Physics 240 on the classical theory of electricity and magnetism. It tries to develop further both the theoretical ideas contained in Maxwell's equations for these fields, as well as their practical application. It is a required course for all physics concentrators, and is basic to many of the courses and laboratories which follow. Physics 242 is strongly recommended.

**406. Statistical and Thermal Physics. *** Phys.
126 or 240-241, and Math. 216. (3). (NS). *

An introduction to the thermal and other macroscopic properties of matter, their description in terms of classical thermodynamics, and their microscopic interpretation from the perspective of statistical mechanics. Techniques from classical mechanics, electricity and magnetism, and elementary quantum mechanics will be used. Frequent homework problem assignments, at least one hour exam, and a final examination will be given.

**407. Thermodynamics Laboratory. *** Phys.
126 or 240-241. (2). (NS). *

This course is normally elected concurrently with Physics 406
and emphasizes thermodynamics and heat transport. Each section
consists of eight students subdivided into groups of two with
each group rotating through five experiments: (1) use of the thermoelectric
effect to measure temperature, (2) use of thermistors for the
measurement of temperature, (3) measurement of the viscosity of
gases, (4) measurement of the thermal conductivity of gases, and (5) determination of the ice-water phase diagram. Each experiment
takes a maximum of three weeks of laboratory time. Grades are
based on the record of data taken, computation and analysis, error
analysis, display of results (graphs, tables, * etc.) * and comparison
of results with theory and/or accepted values. Laboratory performance
is observed and evaluated by the course instructors.

**409. Modern Physics Laboratory. *** Open primarily
to science concentrators with junior standing, or by permission
of instructor. (2). (NS). May not be elected by Physics concentrators. *

This course is an advanced undergraduate laboratory course designed to acquaint students in the basic techniques of experimental physics and to introduce them to physical phenomena of modern physics. Students select experiments from among those which are available. The results of the experiments are recorded. These laboratory notes together with a written laboratory report are graded. The reports and performance in laboratory are the basis for the course grade. There are no formal examinations. Students may modify existing experiments or design new experiments. Topics investigated include: photo-electric effect; diffraction; electron charge and charge-to-mass ratio and others. This laboratory is not open to physics concentrators who should choose Physics 459 or 461. This course is required for concentrators in the Engineering Physics program.

**415. Special Problems for Undergraduates. *** Permission
of instructor. (1-6). (Excl). (INDEPENDENT). *

This course emphasizes experimental or theoretical research under the supervision of a faculty member. Generally a small facet of a large research undertaking is investigated in detail. This is an independent study course, and instructor permission is required. The appropriate form is available in the Physics Department Office, 1049 Randall Laboratory

**418. Macromolecular and Biophysics II. *** Math.
216 and Phys. 242, 402, and 417; or permission of instructor.
(3). (NS). *

This course will provide an introduction to physical techniques used to study the ultrastructure of macromolecules and biomolecules: characterization of macromolecular structure; factors influencing conformational stability; an elementary study of structural techniques; scattering theory (such as x-ray diffraction, light scattering, etc.) and spectroscopic methods (such as infrared, Raman, UV, etc.) with application to macromolecules.

**452. Methods of Theoretical Physics. *** Phys.
451. (3). (NS). *

This is a course in mathematical methods of physics. The textbook
by G. Arfken, * Mathematical Methods for Physicists, * is
used; approximately 85% of the contents will be covered. This
course is considered a necessary preparation for graduate school.

**453. Atomic Physics I. *** Phys. 242 or equivalent, Phys. 401 and 405; or permission of instructor. (3). (NS). *

A brief review of the mechanical, thermal, electric, magnetic and chemical properties of matter will be given. The empirical foundation of atomic physics will be discussed in some detail. The theoretical developments resulting from the failure of classical theories and early atomic models will be discussed, wherein wave mechanics will be studied and a brief introduction to the Schrödinger equation will be given. Other topics include the exclusion principle and some quantum statistical mechanics.

**457. Nuclear Physics. *** Phys. 453. (3).
(NS). *

Topics of study will include (1) nuclear structure: binding energies, size and shape, angular momentum, parity, isopin, magnetic moments, electric quadrupole moments, statistical, shall and collective models for the nucleus; (2) nuclear decays, radioactivity, barrier penetration and alpha-particle decay, the weak interaction and beta-decay, electromagnetic transitions in nuclei; (3) nuclear interactions: basic properties of the nuclear force, nucleon-nucleon scattering, the deuteron, nuclear reactions and reaction models; and (4) nuclear radiation: interaction of charged particles, gamma-rays and neutrons with matter, nuclear radiation detectors. The basic elements of quantum mechanics are used.

**459. Nuclear Laboratory. *** Phys. 242 and any 400-level physics laboratory course, or permission of instructor.
(2). (NS). *

This is an advanced laboratory course designed to acquaint students with the techniques of experimental nuclear physics and to introduce them to physical phenomena of modern physics. Included are experiments in the following areas: scintillation counting; gamma-gamma angular correlation; Compton effect; Rutherford scattering; muon lifetime; nuclear magnetic resonance; and nuclear fission. This course is normally elected as a sequel to Physics 403, 407, or 409.

**461. Atomic Laboratory. *** Phys. 242 and any 400-level physics laboratory course, or permission of instructor.
(2). (NS). *

Intended mostly for science majors. Conducted in a manner similar to Physics 403, 407, 409 and 459, but more advanced. Emphasis on atomic phenomena and instrumentation. Experiments available include atomic spectroscopy, Zeeman effect, optical pumping and lasers, x-ray diffraction and Moseley's law, Faraday effect and others.

**463. Introduction to Solid State Physics. *** Phys.
453 or permission of instructor. (3). (NS). *

Main topics to be covered are cohesion in solids; Free Electron
Theory in Metals; Periodicity in Solids, Crystal Structure, Symmetry, Reciprocal Lattice, Diffraction Methods, Electrons in Periodic
Structures; Band Theory of Solids and Fermi Surfaces; Phonons, Thermal Effects; Applications to Semiconductor Devices. Students
should have a background in thermodynamics, elementary statistical
mechanics, plus a little quantum mechanics. There are three lectures
per week, one of which may be a discussion period. Student evaluation
is based on midterm and final exams; occasional short tests and weekly problem sets. Text: C. Kittel, * Introduction to Solid
State Physics, * 5th ed., Wiley, 1976.

**465. Senior Seminar. *** Open to Physics concentrators
in their junior or senior year. (2 each). (NS). Fulfills the Junior-Senior
writing requirement. *

This is a seminar on History of 20th Century Physics. Through reading and from discussions with visiting speakers we explore the historical aspects of selected topics in modern physics. Since seminar members are expected to contribute actively to discussion and since the physics content of this history will be emphasized, students will be expected to have had several courses beyond Physics 242. Open to juniors, seniors and graduate students.

**498. Introduction to Research for Honors Students.
*** Permission of departmental concentration adviser.
(2-3). (Excl). (INDEPENDENT). *

Honors students get introductory experience with research work with faculty, the results of which can provide the basis for a thesis used to fulfill that part of the Honors requirement. If 498 is not completed in one term, students register for Physics 499 in a subsequent term. This is an independent study course. Permission of the departmental concentration advisor is required, and the appropriate form is available in the Physics Department Office, 1049 Randall Laboratory.

**499. Introduction to Research for Honors Students.
*** Permission of physics concentration advisor. (2-3).
(Excl). (INDEPENDENT). *

Honors students get introductory experience with research work with faculty, the results of which can provide the basis for a thesis used to fulfill that part of the Honors requirement. If 498 (see previous description) is not completed in one term, students register for Physics 499 in a subsequent term. This is an independent study course. Permission of the departmental concentration advisor is required, and the appropriate form is available in the Physics Department Office, 1049 Randall Laboratory.

University of Michigan | College of LS&A | Student Academic Affairs | LS&A Bulletin Index

This page maintained by LS&A Academic Information and Publications, 1228 Angell Hall

The Regents
of the University of Michigan,

Ann Arbor, MI 48109 USA +1 734 764-1817

Trademarks of the University of Michigan may not be electronically or otherwise altered or separated from this document or used for any non-University purpose.